
Computational Synthesis of Multi-Domain Systems

Zhun Fan*, Kisung Seo*, Ronald C. Rosenberg+, Jianjun Hu*, Erik D. Goodman*

*Genetic Algorithms Research and Applications Group (GARAGe), Michigan State University
 +Department of Mechanical Engineering, Michigan State University

Abstract
Several challenging issues have to be addressed for
automated synthesis of multi-domain systems. First,
design of interdisciplinary (multi-domain) engineering
systems, such as mechatronic systems, differs from
design of single-domain systems, such as electronic
circuits, mechanisms, and fluid power systems, in part
because of the need to integrate the several distinct
domain characteristics in predicting system behavior.
Second, a mechanism is needed to automatically select
useful elements from the building block repertoire,
construct them into a system, evaluate the system and
then reconfigure the system structure to achieve better
performance. Dynamic system models based on diverse
branches of engineering science can be expressed using
the notation of bond graphs, based on energy and
information flow. One may construct models of
electrical, mechanical, magnetic, hydraulic, pneumatic,
thermal, and other systems using only a rather small set
of ideal elements as building blocks. Another useful tool,
genetic programming, is a powerful method for creating
and evolving novel design structures in an open-ended
manner. Through definition of a set of constructor
functions, a genotype tree is created for each individual
in each generation. The process of evaluating the
genotype tree maps the genotype into a phenotype -- i.e.,
to the abstract topological description of the design of a
multi-domain system, using a bond graph along with
parameters for each component, if needed. Finally,
physical realization is carried out to relate each abstract
element of the bond graph to corresponding components
in various physical domains. To implement the above
GPBG approach in a specific application domain,
cautious steps have to be taken to make the evolved
design represented by bond graphs realizable and
manufacturable. To achieve this, one important step is to
define appropriate building blocks of the design space
and carefully design a realizable function set in genetic
programming. We are going to illustrate this in an
example of behavioral synthesis of a RF MEM circuit – a
micro-mechanical band pass filter design. Finally, we
have some discussions on how to extend the above
approach to an integrated evolutionary synthesis
environment for MEMS across a variety of design layers.

1. Introduction
Design automation is undoubtedly a very difficult
task. However, we have some very successful

application examples. Much research has been done
on design automation of single domain systems
using evolutionary computation approach. For
example, automated design of analog circuits has
attracted much attention in recent years (Grimbleby
2000; Lohn 1999; Koza et al 1999; Fan et al 2001).
They could be classified into two categories: GA-
based and GP-based. Most GA-based approaches
realize topology optimization via a GA and
parameter optimization with numerical optimization
methods (Grimbleby 2000). Some GA approaches
also evolve both topology and component
parameters; however, they typically allow only a
limited amount of components to be evolved (Lohn
1999). Although their works basically achieve good
results in analog circuit design, they are not easily
extendable to interdisciplinary systems like
mechatronic systems.

 Several challenging issues have to be addressed for
automated synthesis of multi-domain systems. First,
design of interdisciplinary (multi-domain) engineering
systems, such as mechatronic systems, differs from
design of single-domain systems, such as electronic
circuits, mechanisms, and fluid power systems, in part
because of the need to integrate the several distinct
domain characteristics in predicting system behavior.
Second, a mechanism is needed to automatically
select useful elements from the building block
repertoire, construct them into a system, evaluate the
system and then reconfigure the system structure to
achieve better performance. It is a remarkable fact that
models based on apparently diverse branches of
engineering science can be expressed using the
notation of bond graphs, based on energy and
information flow. Using that language, one may
construct models of electrical, mechanical, magnetic,
hydraulic, pneumatic, thermal, and other systems
using only a rather small set of ideal elements as
building blocks. As a special form of evolutionary
computation, genetic programming is a powerful
approach to creating and evolving novel design
structures in an open-ended manner. Through
definition of a set of constructor functions, a genotype
tree is created for each individual in each generation.
The process of evaluating the genotype tree maps the

From: AAAI Technical Report SS-03-02. Compilation copyright © 2003, AAAI (www.aaai.org). All rights reserved.

genotype into a phenotype -- i.e., to the abstract
topological description of the design of a multi-
domain system, using a bond graph along with
parameters for each component, if needed. Finally,
physical realization is carried out to relate each
abstract element of the bond graph to corresponding
components in various physical domains. The above
approach, combining bond graphs and genetic
programming, has led to several successful design
results by computational synthesis. The first is a
domain-independent eigenvalue placement design
problem that is tested for some sample target sets of
eigenvalues (Seo et al 2001). The second is in the
electrical domain – design of analog filters to achieve
specified performance over a given frequency range
(Fan et al 2001). The third is in the electromechanical
domain – redesign of a printer drive system to obtain
desirable damping of the position of a rotational load
(Fan et al 2002).

We are going to extend our approach to synthesize
MEMS (Micro Electro Mechanical Systems). Due to
their multi-domain and intrinsically three-dimensional
nature, design and analysis of MEMS is very
complicated and requires access to simulation tools
with finite element analysis capability, like
Conventorware and ANSYS. Computation cost is
typically very high. A common representation that
encompasses multiple energy domains is thus needed
for modeling of the whole system. We need a system-
level model that reduces the number of degrees of
freedom from the hundreds and thousands of degrees
of freedom characterizing the meshed 3-D model to as
few as possible. The bond graph, based on power
flow, provides a unified model representation across
inter-disciplinary system domains and is also
compatible with 3-D numerical simulation and
experimental results in describing the macro behavior
of the system, so long as suitable lumping of
components can be done to obtain lumped-parameter
models. It can be used to represent the behavior of a
subsystem within one energy domain, or the
interaction of multiple domains. Therefore, the first
important step in our method of MEMS synthesis is to
develop a strategy to automatically generate bond
graph models to meet particular design specifications
on system level behaviors.

For system-level design, hand calculation is still the
most popular method in current design practice. This
is for two reasons: 1) The MEMS systems we are
considering, or designing, are relatively simple in
dynamic behaviors -- especially the mechanical parts -
- largely due to limitation in fabrication capability. 2)
There is no powerful and widely accepted synthesis
approach to design multi-domain systems
automatically.

The GP/BG approach, which combines the capability
of genetic programming to search in an open-ended
design space, and the merits of bond graphs for
representing and modeling multi-domain systems
elegantly and effectively, proves to be a promising
method to do system-level synthesis of multi-domain
dynamical systems, including MEMS. In the first or
higher level of system synthesis, our GPBG approach
can help to obtain a high-level description of a system
that assembles the system from a library of existing
components in an automatic manner to meet a
predefined design specification. Then in the second or
lower level, other numerical optimization approaches
(Zhou 1998), as well as evolutionary computation,
may be used to synthesize custom components from a
functionality specification. It is worthwhile to point
out that for the system designer, the goal of synthesis
is not necessarily to design the optimum device, but to
take advantage of rapid prototyping and "design
reuse" through component libraries; while for the
custom component designer, the goal may be
maximum performance. These two goals may lead to
different synthesis pathways.

However, in trying to establish an automated synthesis
approach for MEMS, we should take cautious steps.
Due to the limitation of fabrication technology, there
are many constraints in design of MEMS. Unlike in
VLSI, which can draw on extensive sets of design
rules and programs that automatically test for design-
rule violations, the MEMS field lacks design
verification tools at this time. This means that no
design automation tools are available at this stage
capable of designing and verifying any kind of
geometrical shapes of MEMS devices. Thus,
automated MEMS synthesis tools must solve sub-
problems of MEMS design in particular application
domains for which a small set of predefined and
widely used basic electromechanical elements are
available, to cover a moderately large functional
design space.

Automated synthesis of a RF MEM device, namely,
micro-mechanical band pass filter is taken as an
instance in this paper. As designing and
micromachining of more complex structures is a
definite trend, and research into micro-assembly is
already on its way, the GP/BG approach is believed to
have many potential applications. More work to
extend the above approach to an integrated
evolutionary synthesis environment for MEMS across
a variety of design layers is also discussed in the end.

2. Design Methodology

2.1 Bond Graphs

The bond graph is a modeling tool that provides a
unified approach to the modeling and analysis of
dynamic systems, especially hybrid multi-domain
systems including mechanical, electrical, pneumatic,
hydraulic components, etc. (Karnopp et al 2000). It is
the explicit representation of model topology that makes
the bond graph a good candidate for use in open-ended
design search. For notation details and methods of
system analysis related to the bond graph representation
see Karnopp et al. and Rosenberg (Rosenberg et a
1993). Much recent research has explored the bond
graph as a tool for design (Youcef-Toumi 1999).

Bond graphs have four embedded strengths for design
applications, namely, the wide scope of systems that can
be created because of the multi- and inter-domain nature
of bond graphs, the efficiency of evaluation of design
alternatives, the natural combinatorial features of bond
and node components for generation of design
alternatives, and ease of mapping to the engineering
design process. Those attributes make bond graphs an
excellent candidate for modeling and design of a multi-
domain system.

2.2 Bond Graph and Genetic Programming

Genetic programming is an extension of the genetic
algorithm, using evolution to optimize actual computer
programs or algorithms to solve some task (Holland
1975, Goldberg 1989), typically involving a graph-type
(or other variable-length) representation. The most
common form of genetic programming (Koza et al,
1994) uses trees to represent the entities to be evolved.
Genetic programming can manipulate variable-sized
strings and can be used to “grow” trees that specify
increasingly complex bond graph models. The tree
representation on GP chromosomes, as compared with
the string representation typically used in GA, gives GP
more flexibility to encode solution representations for
many real-world design applications. The bond graph,
which can contain cycles, is not represented directly on
the GP tree—instead, the function set (nodes of the tree)
encodes a constructor for a bond graph.

Defining of a proper function set is one of the most
significant steps in preparing a genetic programming
run. It may affect both the search efficiency of genetic
programming and validity of evolved results and is

closely related to the selection of building blocks for the
system being designed. In this research, a basic function
set and modular function set are presented and listed in
table 1 and table 2. Operators in the basic function set
basically aim to construct primitive building blocks for
the system, while operators in the modular function set
purport to construct relatively modular and predefined
building blocks composed of primitive building blocks.
Notice that numeric functions are included in both
function sets, as they are needed in both cases. In other
research, we hypothesize that usage of modular
operators in genetic programming has some implications
in improving its search efficiency. However, in this
paper, we concentrate on another issue, proposing the
concept of a realizable function set. By using only
operators in a realizable function set, we seek to
guarantee that the evolved design is physically realizable
and has the potential to be manufactured. This concept
of realizability may include stringent fabrication
constraints to be fulfilled in some specific application
domains. This idea is to be illustrated in the design
example of an RF MEM device, namely, a micro-
mechanical band pass filter.

Examples of modular operators, namely insert_BU and
insert_CU operators, are illustrated in figure 1 and figure
2. Examples of basic operators are available in our
earlier work (Seo et al 2001).

Basic Function Set

add_C Add a C element to a junction
add_I Add a I element to a junction
add_R Add a R element to a junction
insert_J0 Insert a 0-junction in a bond
insert_J1 Insert a 1-junction in a bond
replace_C Replace the current element with a C
replace_I Replace the current element with a I
replace_R Replace the current element with a R
+ Add two ERCs
- Substract two ERCs
enda End terminal for add functions
endi End terminal for insert functions
endr End terminal for replace functions
erc Ephemeral Random Constant (ERC)

 Table 1. Operators in Basic Function Set

As illustrated in figure 1, a resonant unit (RU) that
composes of one I, R, and C component all attached to
an 1-junction, is inserted to an original bond with
modifiable site through the insert_RU function. After
insert_RU function is executed, a new RU is created and
one additional modifiable site, namely bond (3), appears
in the resulting phenotype of bond graph along with the
original modifiable site bond (1). The new added 1-
junction also has an additional modifiable site (2). As
component C, I, R all have parameters to be evolved,
insert_RU function has three corresponding arity (4) (5)
(6) for numerical evolution of parameters.

Figure 2 explains how insert_BU function works.
Bridging unit (BU) is a subsystem that composes of
three capacitors with the same parameters attached
together with a 0-junction in the center and two 1-
junctions at the left and at the right respectively. After
execution of the insert_BU function, an additional
modifiable site (2) appears at the rightmost newly
created bond. The reason why RU and BU looks in that
way is given in the next case study section.

3. Case Study

3.1 Problem Formulation

Automated synthesis of a RF MEM device, micro-
mechanical band pass filters is used as an example in
this paper (Wang and Nguyen 1999). Through
analyzing two popular topologies used in surface
micromachining of micro-mechanical filters, we found
that they are topologically composed of a series of RUs
and Bridging Units (BUs) or RUs and Coupling Units
(CUs) concatenated together. Figure 3, 4, 5 illustrates

Modular Function Set

insert_RU Insert a Resonant Unit
insert_CU Insert a Coupling Unit
insert_BU Insert a Bridging Unit
add_RU Add a Resonant Unit
insert_J01 Insert a 0-1-junction compound
insert_CIR Insert a special CIR compound
insert_CR Insert a special CR compound
Add_J Add a junction compound
+ Add two ERCs
 - Substract two ERCs
endn End terminal for add functions
endb End terminal for insert functions
endr End terminal for replace functions
erc Ephemeral Random Constant (ERC)

 Resonant
Unit

Bridging
Unit … …

Figure 3. Layout of Filter Topology I:
Filter is composed of a series of Resonator Units
(RUs) connected by Bridging Units (BUs).

Table 2. Operators in Modular Function Set

Figure 1. Operator to Insert Bridging Unit

Figure 2. Operator to Insert Resonant Unit

the layouts and bond graph representations of filter
topology I and II.

3.2 Design Embryo

All individual genetic programming trees create bond
graphs from an embryo. Selection of the embryo is also
an important topic in system design, especially for multi-
port systems. In our filter design problems, we use the
following bond graph as our embryo, as shown in Figure
6.

3.3 Function Set
GPBG is a quite general approach to automate synthesis
of multidisciplinary systems. Using a basic set of
building blocks, we can actually try to construct any
kind of systems without constraints. However,
engineering systems in the real world are confined by
various constraints. So if we implement GPBG to
synthesis real world engineering systems, we have to
take care that those constraints can be enforced within
the bounds of the approach.

Unlike our previous designs with basic function sets,
which impose fewer topological constraints on design,
MEMS design features relatively few devices in the
component library. These devices are typically more
complex in structure than those primitive building
blocks used in the basic function set. Only evolved
designs represented by bond graphs matching the
dynamic behavior of those devices belong to the
component library are expected to be manufacturable
under current or anticipated technology. Thus, an
important and special step in MEMS synthesis with the
GPBG approach is to define a realizable function set
that, throughout execution, can always produce
phenotypes that can be built using existing or expected
technology.

By analyzing the system of MEM filters from a bond
graph viewpoint, we know that it is basically composed
of Resonator Units (RUs) and Coupling Units (CUs).
Another popular MEM filter topology includes
Resonator Units and Bridging Units (BUs). It turns out
that a realizable function set for these design topologies
often includes functions from both the basic set and
modular set. In many cases, multiple realizable function
sets, rather than only one, can be used to evolve

evolved circuit

:Se
uS

1

SR

RL0

…

Resonant
Unit

Coupling
Unit

I
C

1

R

I
C

1

R

 0

C

… …

…

I
C

1

R

I
C

1

R

 0

C C C

1 1

Resonant
Unit

Resonant
Unit

Bridging
Unit

… …

Figure 4. Bond Graph Representation of
Filter Topology I

Figure 5. Layout of Filter Topology II:
Filter is composed of a series of Resonator
Units coupled by Coupling Units.
Its corresponding bond graph representation
is also shown.

 Figure 6. Embryo of Design

realizable structures of MEMS. In this research, we used
the following function set, along with traditional
numeric functions and end operators for creating filter
topologies with coupling units and resonant units.

3.4 Fitness Function
The fitness function is defined as follows.
Within the frequency range of interest, uniformly sample
100 points. Compare the magnitudes of the frequency
response at the sample points with target magnitudes,
which is one within the pass frequency range of [316,
1000] Hz, and zero otherwise between 0.1 and 100KHz.
Compute their differences and get a sum of squared
differences as raw fitness, defined as rawFitness . Then
normalized fitness is calculated according to:

)(5.0
raw

norm FitnessNorm
NormFitness ++=

3.5 Experimental Setup
We used a strongly-typed version [Luke, 1997] of lilgp
[Zongker and Punch, 1996] to generate bond graph
models. The major GP parameters were as shown
below:

Three major code modules were created in our work.
The algorithm kernel of HFC-GP was a modified
version of an open software package developed in our
research group -- lilgp. A bond graph class was
implemented in C++. The fitness evaluation package is
C++ code converted from Matlab code, with hand-coded
functions used to interface with the other modules of the
project. The commercial software package 20Sim was
used to verify the dynamic characteristics of the evolved
design. The GP program obtains satisfactory results on a
Pentium-IV 1GHz in 1000~1250 minutes.

3.6 Experiment Results
Experiment results show strong topological search
capability of genetic programming and feasibility of our
GPBG approach for finding realizable design for micro-
mechanical filters. Although significant fabrication
difficulty is currently presented when fabricating a
micro-mechanical filter with more than 3 resonators, it

does not invalidate our research and topological search
capability of the GPBG approach, considering its
potential in exploring more complicated topologies of
future MEMS design and the ever-progressing
technology frontiers of MEMS fabrication.

In figure 7 above, we define K = number of resonant
units used in the filter topology. It is very obvious from
the fitness improvement curve that as evolution goes on,
fitness value undergoes continual improvement (Hu et al
2002). It is also an interesting observation that, as fitness
improves, the value of K also becomes larger. This
observation is supported by the fact that a higher-order
system with more resonator units has the potential of
better system performance than its low-order
counterpart. Table 2 shows the values of K and the
numbers of the generations at which K changes.

The plot of corresponding system frequency responses at
generations 98, 164, 364 and 409 are shown in Figure 8.

Population size: 500 in each of
thirteen subpopulations
Initial population: half_and_half
Initial depth: 4-6
Max depth: 50 Max_nodes 5000
Selection: Tournament (size=7)
Crossover: 0.9 Mutation: 0.3

 1.010 110 210 310 410 510

K=3

K=5K=6,7

 Frequency

M
ag

ni
tu

de

of generations 64 98 158 164 364 409
 K 2 3 4 5 6 7

}__,__,__,__
,__,1__,_{

IaddfRaddfCaddfCUinsertf
RUinsertfJinsertftreef=ℜ

Figure 7. Fitness Improvement Curve

Table 2. Number of Generations vs. Number of Resonator Units

Figure 8. Plot of frequency responses of design
candidates with different number of resonator units.
All results are from one genetic programming run of
GPBG approach.

A layout of a design candidate with three resonators and
its bond graph representation are shown below in figure
9. Notice that the geometry of resonators may not show
the real sizes and shapes of a physical resonator and the
layout figure only serves as a topological illustration.

4. Extensions
In MEMS, there are two or three levels of designs that
need to be synthesized. Usually the design process starts
with basic capture of the schematic of the overall
system, then goes on through layout and construction of
a 3-D solid model. So the first design level is the system
level, which includes selection and configuration of a
repertoire of planar devices or subsystems. The second
level is 2-D layout of basic structures like beams to form
the elementary planar devices. In some cases, if the
MEMS is basically a result of a surface-micro machining
process and no significant 3-D features are present,
design of this level will end one cycle of design. More
generally, modeling and analysis of a 3-D solid model
for MEMS is necessary.

For the second level -- two-dimensional layout
designs of cell elements -- layout synthesis usually takes
into consideration a large variety of design variables and
design constraints. The most popular synthesis method
seems to be based on conventional numerical

optimization methods. The design problem is often first
formulated as a nonlinear constrained optimization
problem and then solved using an optimization software
package (Zhou 1998). Geometric programming, one
special type of convex optimization method, is reported
to synthesize a CMOS op-amp. The method is claimed
to be both globally optimal and extremely fast. The only
disadvantage and limitation is that the design problem
has to be carefully formatted first to make it suitable for
the treatment of the geometric programming algorithm.
However, all the above approaches are based on the
assumption that the structures of the cell elements are
relatively fixed and subject to no radical topology
changes (Hershenson et al 2001). A multi-objective
evolutionary algorithm approach is reported for
automatic synthesis of topology and sizing of a MEMS
2-D meandering spring structure with desired stiffnesses
in certain directions (Zhou et al 2001).

The third level design calls for FEA (Finite Element
Analysis). FEA is a computational method used for
analyzing mechanical, thermal, electrical behavior of
complex structures. The underlying idea of FEA is to
split structures into small pieces and determine
behaviors of each piece. It is used for verifying results of
hand calculations for simple model, but more
importantly, for predicting behavior of complex models
where 1st order hand calculations are not available or
insufficient. It is especially well suited for iterative
design. As a result, it is quite possible that we can use an
evolutionary computation approach to evolve a design
using evaluation by means of FEA to assign fitness.
Much work in this area has already been reported and it
should also be an ideal analysis tool for use in the
synthesis loop for final 3-D structures of MEMS.
However, even if we have obtained an optimized 3-D
device shape, it is still very difficult to produce a proper
mask layout and correct fabricate procedures.
Automated mask layout and process synthesis tools will
be very helpful to relieve the designers from considering
the fabrication details and focus on the functional design
of the device and system instead (Ma L., Antonsson E.
K. 2000)

Our long time task of research is to include
computational synthesis for different design levels, and
to provide support for design engineers in the whole
MEMS design process.

5. Conclusions
This paper has suggested a design methodology for
automatically synthesizing system-level designs for
MEMS. For design of systems like the MEM filter
problem, with strong topology constraints and fewer
topology variations allowed, the challenge is to define a
realizable function set that assures the evolved design is
physically realizable and can be built using existing or

Figure 9. Layout and bond graph representation
of a design candidate from the experiment with
three resonator units coupled with two coupling
units.

anticipated technologies. Experiments show that a
mixture of functions from both a modular function set
and a basic function set form a realizable function set,
and that the GPBG algorithm evolves a variety of
designs with different levels of topological complexity
that satisfy design specifications.

Acknowledgement

The authors gratefully acknowledge the support of the
National Science Foundation through grant DMI
0084934.

References
Fan Z., Hu J., Seo K., Goodman E., Rosenberg R., and
Zhang B., 2001. Bond Graph Representation and GP for
Automated Analog Filter Design. Genetic and
Evolutionary Computation Conference Late-Breaking
Papers, San Francisco,: 81-86.

Fan Z., Seo K., Rosenberg R. C., Hu J., Goodman E. D.,
2002. Exploring Multiple Design Topologies using
Genetic Programming and Bond Graphs. Proceedings of
the Genetic and Evolutionary Computation Conference,
GECCO-2002, New York : 1073-1080.

Goldberg D., 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley.

Grimbleby J. B. 2000. Automatic analogue circuit
synthesis using genetic algoriths. IEE Proc. – Circuits
Devices Syst. : 319-323. #

Hershenson M. M, Boyd, S. P., and Lee T.H. 2001.
Optimal Design of a CMOS Op-Amp via Geometric
Programming. Computer-Aided Design of Integrated
Circuits and Systems.vol 20(1): 1-21

Holland J. H. 1975. Adaptation in Natural and Artificial
Systems, University of Michigan Press.

Hu J., Goodman E. D., 2002. Hierarchical Fair
Competition Model for Parallel Evolutionary
Algorithms. CEC 2002, Honolulu, Hawaii, May,

Karnopp D. C., Margolis D. L. and Rosenberg R. C.
2000. System Dynamics: Modelling and Simulation of
Mechatronic Systems. Third Edition. New York: John
Wiley & Sons, Inc.

Koza J. R., Bennett III F. H., Andre D. and Keane M.
A. 1999b. The design of analogue circuits by means
of genetic programming. In P. J. Bentley (ed.),

Evolutionary Design by Computers, 365-385. London:
John Wiley & Sons Ltd.

Koza J. R., 1994. Genetic Programming II: Automatic
Discovery of Reusable Programs, The MIT Press

Lohn J. D., Colombano S. P. 1999. A circuit
representation techniques for automated circuit design.
IEEE Transactions on Evolutionary Computation: 205-
219. #

Luke S., 1997. Strongly-Typed, Multithreaded C
Genetic Programming Kernel,
http://www.cs.umd.edu/users/-seanl/gp/patched-gp/.

Ma L. and Antonsson E.K. 2000. Automated Mask-
Layout and Process Synthesis for MEMS. Technical
Proceedings of the 2000 International Conference on
Modeling and Simulation of Microsystems : 20-23

Paynter H. M. 1991. An epistemic prehistory of
bond graphs. In P. C. Breedveld and G. Dauphin-
Tanguy (ed.), Bond Graphs for Engineers, 3-17.
Amsterdam, The Netherlands: Elsevier Science
Publishers.

Rosenberg R. C., 1993. Reflections on Engineering
Systems and Bond Graphs, Trans. ASME J. Dynamic
Systems, Measurements and Control, 115: 242-251

Seo K., Goodman E., and Rosenberg R., 2001, First
Steps toward Automated Design of Systems Using Bond
Graphs and Genetic Programming, Proc. Genetic and
Evolutionary Computation Conference, San Francisco,
p. 189 (1-page abstract) and poster.

Wang K. and Nguyen C. T. C. 1999. Journal of
Microelectomechanical Systems. 8(4): 534-556

Youcef-Toumi K., 1996. Modeling, Design, and Control
Integration: A necessary Step in Mechatronics.
IEEE/ASME Trans. Mechatronics, 1(1): 29-38

Zonker D., Punch W.F., 1998. lil-gp 1.1 User’s Manual.
GARAGe, College of Engineering, Michigan State
University.

Zhou N., Zhu B., Agogino A., Pister K. 2001.
Evolutionary Synthesis of MEMS design. ANNIE 2001,
IEEE Neural Networks Council and Smart Engineering
System Design conference, St. Louis, MO, Nov 4-7,
2001.

Zhou Y. Layout Synthesis of Accelerometers. 1998.
Thesis for Master of Science. Department of Electrical
and Computer Engineering, Carnegie Mellon University.

